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SUMMARY

The postbuckling and maximum strength analyses of uniformly shortened,
simply supported rectangular plates with straight, unloaded edges are per-
f~ried by using Reissner's variational principle in conjunction with a
deformation theory of plasticity. The results are compared to (1) ex-
perimental data for a rectangular plate in which the test conditione
basically reflect the boundary conditions specified in the present
analyses, and (2) a potential energy solution that correlates well with
experiment, but in which the effect of waveform change on the average
stress carried by the plate is accounted for only in a gross menner and
in which the effect of small, local unloading is neglected. Good agree-
ment with experiment establishes confidence in the new approach and in-
dicates that the simplified technique utilized in the potential energy
solution to compensate for waveform changes may be employed for engineer=
ing purposes. Both amalytical approaches predict a slightly conservative
plate maximum strerngth relative to the experimental result. This dis-
crepancy is attributed to slight departures of the test conditions from
the ideal boundary and loading conditions assumed in the analyses.

An application of Reissner's principle and a modified version of the
principle is undertaken initially to obtain the elastic postbuckling
behavior of uniaxially compressed square and rectangular plates. Excel-
lent agreement of elastic-solution results with essentially "exact"
solutions of other authors for the same boundary conditions establishes
the effectiveness of the Reissner and modified Reissner principles and
Justifies the application of the Reissner-principle approach to the
maximum strength problem.

iii



TABLE OF CONTENTS

SUMMARY o o o o o o o & & @ o 6 ¢ o » o o o o ¢ o ¢ ¢ o s o o o @
LIST OF ILLUSTRATIONS « « « o o o o o o o o o o o o o o o o o o o
LIST OF TABLES . « o o o « o o o o o o o o o o o o o o o o o o o
LIST OF SYMBOLS + ¢ « o o o o o o o o o o o o o o o o o o o o o o
INTRODUCTION « o « o o o o o o o o o o o o o o o o o o o o o o o
THEORY ¢ « o o & o o o & s o o o & o o e o s o o o o o » o ¢ o o

Statement of Problem and Basic Assumptions . . . « « « . . .
Variational Principle . « ¢ ¢ o o o o o o o o o o o o o o o

Specialization for Elastic Behavior, Unmodified Version .
Specialization for Elastic Behavior, Modified Version . .

METHOD OF SOLUTION ¢ o o o o o o o o o o o o o o o o o o o o o o

Elastic Problem, Modified Reissner Functional (Solutions A)

Elastic Problem, Unmodified Reissner Functional (Solutions B)

Inelastic Problem, Umnmodified Reissner Functional . . . . .
RESULTS AND DISCUSSION & « o o o o o o o o o o o o o o o o o o

Elastic Solutions .« ¢« o ¢ o o o o o ¢ o o o o o o o o o o o
Tnelastic Solutions . ¢ ¢ o ¢ o o ¢ o o o o ¢ o o o o oo o .

CONCLUDING REMARKS ¢ ¢ o o o o o« o o o o o o o o o o o o o o o =
LITERATURE CITED o o o o o o o o o o o o o o o o o o o o o o o =
APPENDIXES
I. Euler Equations and Boundary Conditions Derived rrom the
Vanishing of the First Variation of the Reissner Func-

tional for a Two-Element Plate With Prescribed End
Shortening « « o o o o o « o o o o o o o o o o o o o o

II. Modified Reissner Functional for Elastic Problem . . . .
III. Unmodified Reissner Functional for Elastic Problem . . .
IV. Newton-Raphson Iterative Technique . . . . . . . . . . .

DISTRIBUTION o o o o o o o o o o o o o o o o o o o o o o o o o o

v

Page
B
i
o Vil
JLEd
. e
30D
& 14D
530 56
w9
R 0
L
i A5
SR L ¢
o 18
o 22
. 22
& 23
. 26
. 46
.u7
« 95
. 59
. 62
. 64



LIST OF ILLUSTRATIONS

Figure
1 Plate Geometry and Coordinate System . . . . . . . . .
2 Stress-Strain Curve for Aluminum 202L4-T3 Assumed in
Present Inelastic Analyses . . . « « o « s o o o o o o
3 Load-Shortening Curves for Square Plates Based on
Elastic Solutions . « « « ¢ o o ¢ o o o o o o o o o o
L Load-Shortening Curves for Rectangular Plates Based on
Elastic Solutions (b/A = 1.25) ¢ « o o ¢ o o o o o o
5 Load-Shortening Curves for Rectangular Plates Based on
Elastic Solutions (b/A =1.33) « « « v ¢ o o o o o « &
6 Load-Shortening Curves for Rectangular Plates Based on
. Elastic Solutions (b/A =1.5) « ¢ ¢ o o ¢ o o o o o o
T Load-Shortening Curves for Rectangular Plates Based on
Elastic Solutions (b/A = 2.0) « ¢ ¢ o o ¢ o o o« o o «
8 Comparison of Load-Shortening Curves for a Rectangular
Plate Based on Prediction of Present Theory, Analysis
of Reference 2, and Experimental Results of Reference 3
9 Theoretical and Empirical Maximum Strength Criteria for

Simply Supported Rectangular Plates . . . . . . . . .

vi

29

30

31

32

33

34

35

36

37



Table

II

II1

v

VI

VII

VIII

LIST OF TABLES

Normalized Stress and Displacement Coefficients for
Square Tlates, Solution AL . . . . .

Normalized Stress and Displacement Coefficients for
Square and Rectangular Plates, Solutions A2

Normalized Stress and Displacement Coefficients for
Rectangular Plates, Solutions A2 . . . . . . . . . .

Normalized Stress and Displacement Coefficients for
Rectangular Plates, Solutions B (B = 1.25 and 1.33)

Normalized Stress and Displacement Coefficients for
Rectangular Plates, Solutions B (B = 1.5 and 2.0)

Normalized Stress and Displacement Coefficients for
a Rectangular Plate (B = 1.2 , nh/b = 2,545 x 10-2) ;
Inelastic Results Based on Aluminum 2024-T3 Plate
Matemiials ol ol o 2 e el el R . el e

Normalized Stress and Displacement Coefficients for
a Rectangular Plate (B = 1.4 , xh/b = 2,545 x 10-2) ;
Inelastic Results Based on Aluminum 2024-T3 Plate
Material . o « ¢« ¢ o e ¢ o o o o o s ¢ s o s o o o @

Normalized Stress and Displacement Coefficients for
a Rectangular Plate (B = 1.6 , nh/b = 2,545 x 10-2) ;
Inelastic Results Based on Aluminum 2024-T3 Plate
Material . o o o ¢ v o o o o o o o o o s o s o o

vii

38

39

Lo

k1

42

43

L5



A.,B.,C
B B €
1425y
D e
iJ 1J

b
D
D
s
E
By
e
e
cr
F’
2
h
1 mon
IR G
1 L5
R
M .M
X° ¥
M
Xy
m

o]

ct

LIST OF SYMBOLS

in-plane stress parameters
bending stress parameters
in-ple tres amet

in-plane stress parameters

plate dimension in y-direction, in.

Et3
flexural rigidity of solid plate = S , 1b-in.
12(1-u")
2Eh2tf
flexural rigidity of two-element plate = ——— | (
1h=im 3

Young's modulus for plate material, psi
secant modulus, psi

unit shortening applied to plate, in./in.
buckling strain or shortening, in./in.

aeff

complementary energy density = f eeffdceff , psi

displacement parameter

overall thickness of two-element plate measured between

center lines of faces, in.

integers

material constant appearing in Equation (7)
numerical constants

plate dimension in x-direction, in.

bending moment per unit length, 1b
twisting moment per unit length, 1b

number of buckles in x-direction

material. constant appearing in Equation (7)
thickness of solid plate, in.

thickness of one face of two-element plate, in.

viii



av

cr

cy

eff

Reissner functional. lb-in.

+

displacement of point in middle surface oi' plate in
X- . y- . and z-directions, respectively. in.

nondimensionalized displacement parameterrs
volume of plate. in.j

plate coordinates (see Figure 1). in.
bending stress parameter = A /A = 313/311 = Cy4/Cqq
buckle aspect ratio = b/x

total shear strain in xy-plane. in./in.

shearing strain at middle surface, in. /in.

shearing strain due to twisting, in./in.

2 2 2 "
effective strain = —— [ e +¢- + c_c_ + =Y , in,/in.
V3 e y & L

total components of strain in x- and y-directions,
respectively, in./in.

components of strain at middle surface in x- and y-
directions. respectively. in,/in,

components of strain due to bending in x- and y-
directions, respectively. in./in.

nondimensional lateral coordinate, 2y/b
buckle half wavelength in x-directicn. 1iu.
Poisson's ratio for plate material
nondimensional axial co-rdinate. 7u/X
average compressive stress., psi
compressive buckling stress, psi

compressive yield stress of material, psi

) s
. = & .
effective stress = \/n_ + 0 -0 0 + 51 . psi
x y Xy R

n



maximum average compressive stress, psi

components of stress in x- and y-directions,
respectively, psi

local average stress in x- and y-directions,
respectively. psi

bending stress in x- and y-directions., respectively. psi
total shear stress in xy-plane, psi
local average shear stress, psi

shear stress due to twisting. psi



INTRCDUCTION

The analytical devcrminetion of postbuckled plate behavior in the plastic
range has been investigated by Mayers and Budiansky for square plates

in Reference 1 and by Mayers, Nelson, and Smith for rectangular plates
in Reference 2. The latter study serves to explain the absence of a
plate maximum strength in the case of the square-plate analysis of
Reference 1 and correlates well with the experimental data presented

by Stein in Reference 3. In Reference 4, Stein discusses the phenomenon
of buckle wavelength change in elastic structures; in Reference 3, s
purely theoretical elastic analysis implies that, unlike square plates,
postbuckled rectangular plates can change buckle aspect ratio at reason-
able values of end shortening. The experimental evidence presented in
Reference 3 proves the phenomenon to be quite true; in addition, the
experimental date reflect a maximum load which cannot be predicted by
the accompenying elastic analysis.

Although the analysis of Reference 2 correlates well with the plate
maximum strength data of Reference 3, the method for obtaining the
final load=-shortening curves leaves a question unanswered. This ques=-
tion concerns the validity of the approximate technique of accounting
for an accurate postbuckled waveform of the plate by adjusting the
first-approximation load-shortening curve at & given shortening in the
plastic range by the ratio, at the same shortening value, of the "exact"
elastic load-shortening curve to the firste-approximation elcsiic loede-
shortening curve. By first-approximation load-shortening curve is meant
that curve obtained under the assumption that the waveform at initial
buckling persists through the postbuckling range to plate failure. This
technique provides good correlation of the theoretical prediction of
Reference 2 for the maximum strength and number of buckles at failure
and experimental results of Reference 3. This procedure is highly
desirable for engineering purposes, as the complexity of the analysis
is reduced considersbly; for problems in which an accurate elastic
analysis exists, a rapid means 1s provided, therefore, for evaluating
the meximum strength of plate elements. Essentially "exact" elastic



solutions to the problem of a compressed, simply supported flat plate
with straight, unlosded edges are given by Stein in Reference 3 (square ¥

and rectangular plates) and by Levy in Reference 5 (square plates).

Cne way in which to justify the use of the load-shortening curve adjust-
ment procedure, on other than an experimental correlation basis, is to
extend the potential energy solution of Reference 2 by utilizing suf=-
ficient terms in the functions describing the displacements u , v ,

and ¥ such that the essentially exact elastic solution can be obtained
and extended into the inelastic region. This procedure would not require
that any adjustment be made to the inelastic solution, since the wave=
form beyond initial buckling would be adequately described.

An alternate method is available, however, that reduces the complexity
of the problem considerably. This method is based on the variational
principle of Reissner given in Reference 6. Stated briefly, the prin-
ciple is based on the simultaneous vanishing of the first variation of
the Reissner functional with respect to admissible states of stress and
strain. The variation yields Euler equations corresponding to (1)
stress-displacement relations and (2) equilibrium conditions, and the
associated boundary conditions. Appendix I contains the variation of
the Reissner functional for a two-element plate with a& core, rigid in
shear, scparating the faces. This configuration, employed in References
1l and 2 to eliminate the added complexity of plasticity effects through
the plate thickness, is utilized again herein for comparison purposes.

Three basic advantages of employing Reissner's principle rather than the
more conventional minimum potential energy theorem for the solution of
the inelastic plate problem are:
1. In the former, stresses and displacements are assumed as com-
pletely independent quantities in a Rayleigh-Ritz solution, H
vhile in the latter, displacements must be determined to great
accuracy in order to obtain satisfactory stresses through the

particular constitutive relations being used.

no

A first approximation to the inelastic stress distribution can

be obtained from an accurate elastic analysis; thus, the

&. :‘i‘.



displacement distributions are no longer required to high
accuracy. The fact that the stress-displacement relations
given by the varlation of the Reissner functional are satisfied
only approximately, and, perhaps, unsatisfactorily, by a
Rayleigh-Ritz solution is of little consequence. This is due
to the proper, independent selection of stresses and displace-
ments which, in turn, eliminates the need to evaluate stresses
in terms of inaccurate displacement derivatives through the
constitutive relations. With equilibrium and compatibility of
deformations satisfied in either case (potential energy method
or Reissner's principle), it would appear that an unacceptable
stress distribution with the constitutive relations satisfied
is much less desirable than reasonably correct displacement and
stress distributions with the constitutive law not satisfied
exactly. This conjecture 1s strerngthened even more when it is
considered that the constitutive lew assumed to hold even in
elastic, homogeneous, isotropic plate theory is only a good
approximation for a conventional materiasl. For either non-
linear elastlc or inelastic considerations, the desirability
of seeking exact satisfaction of an idealized constitutive law
should be subservient to insuring that displacement compati-
bility and equilibrium are satisfied.

3. The effects of nonlinear stress-strain relations are readily
incorporated into the Reissner functional by introducing the
Ramberg-0Osgood representation of the material stress=-strain
curve (Reference 7). With reference to the remcrks in item
2, it should be noted that the uniaxial stress-strain curve
is an accurate representation in general only up to the region
of the 0.2% offset yleld stress.

Strangely enough, Reissner's principle has not been widely utilized to
date. One application of the theorem is found in Reference 8, in which
Sanders, McComb, and Schlechte extend the principle to consider creep
behavior with specific applications to plates and columns. In Reference
9, Meyers and Rehfield apply & modified version of the principle to study



the postbuckling behavior of axially compressed circular cylindrical
shells. The modification of the principle consists of coupling the
bending stresses or their resulting moments to the curvature through
Hooke's law, thus leaving only the in-plane stresses, in-plane dis-
placements, and lateral displacements as variationally independent
quantities.

The present analysis also employs the modified principle for the elastic
postbuckled plate problem, while comparing solutions based upon two- and
three-term lateral displacement functions to the essentially "exact"
square-plate solutions of Levy and Stein. Both the modified and the
unmodified Reilssner functionels are employed with solutions compared to
those of Stein for rectangular plates with aspect ratios 1.33, 1.5, and
2.0 . In all cases, there is little difference obtained in the quanti-
tative results representing the load-shortening relationships.

With confidence established in the present method of solution, the in-
elastic postbuckling solution is obtained for a rectangular plate of
aspect ratio 5:1 . Comparison is made to the solution of Reference 2
and the experimental data of Reference 3. Good agreement is obtained,
with the results indicating that the load-shortening curve adjustment
procedure employed in Reference 2 is fully justified for predicting
plate maximum strength in the respective analyses of References 1 and 2.



THECRY

STATEMENT (F PROBLEM AND BASIC ASSUMPTIONS

Thc problem considered herein is that of the elastic and inelastic post-
buckling behavior of uniformly shortened, simply supported square and
rectangular plates that buckle initially in the elastic range and that
have straight, unloaded edges free to translate in the plane of the
;;late. As observed in Reference 2, major factors in approximating
satisfactorily the postbuckling behavior and, ultimately, the maximum
strength of uniformly compressed, simply supported rectangular plates
with straight, unloaded edges are the combined effects of (1) changes

in waveform beyond initial buckling, (2) changes in buckle aspect ratio
beyord initial buckling, and (3) plasticity. The emphasis is placed on
determining the maximum strength of rectangular plates without utilizing
the load-shortening curve adjustment procedure of References 1 and 2.
The adjustment procedure, in gross fashion, accounts for change in buckle
waveform as postbuckling proceeds. A new solution of the maximum strength
problem is obtained by employing Reissner's variational theorem; the re=-
sults of the present investigation and that of Reference 2 are compared,
and the accuracy of the load=-shortening curve adjustment procedure is
evaluated. To establish confidence in the inelastic analysis based upon
the Reissner principle, elastic solutions for the postbuckling problem
are undertaken and compared with essentially "exact" solutions presented

in References 3 and 5.

The inclusion of plasticity effects in conjunction with analysis based
upon the small strain, moderate rotations strain-displacement relations

of the von Kdrmdén plate theory results in a problem that is nonlinear in
two respects. The two-element plate description (see Figure 1), introduced
in References 1 and 2 to avoid complexity associated with accounting for
plasticity effects through the plate thickness, is employed herein to
provide a direct comparison of the results of the present analyses with
those of Reference 2. The core separating the faces of the plate is
considered to be rigid in shear in the present investigation, but it
provides a means to extend the current analyses to include transverse



shear deformations when the postbuckling behavior of sandwich plates is
of interest. Again, plastic behavior is based upon deformation theory,
and the ramifications of local unloading are assessed in retrospect.
Material compressibility is neglected; thus, Poisson's ratio is taken
as 1/2 throughout the present development.

VARIATIONAL PRINCIPLE

In essence, Reissner's principle states that the vanishing of the first
variation of the Relssner functional with respect to admissible states
of stress and strain establishes the stress-displacement relations, the

equilibrium equations and the associated boundary conditions.

The general functional is formulated first for the inelastic problem;
specializations are made subsequently for purely elastic considerations
in both an unmodified and a modified version of the functional. The
functional modification corresponds to the one introduced in Reference 9
to couple the bending stresses to the assumed deflections and to leave

only the membrane stresses to be determined from the variational process.

The functional for plate-type considerations with edge displacements
specified is given as

+ + T -F’}av 1
f |ce LR (1)

where F’ 1is the complementary energy density. If the end loading were
to be prescribed rather than the end shortening, then the Reissner func-
tional would include another functional term corresponding to the poten-
tial of Lhe prescribed edge loeds, as in the potential energy principle.
The vanishing of the first variation of the functional expressed in
Equation (1) is performed in Appendix I for the two-element plate con-
sidered herein. The variation establishes Euler equations corresponding
to (1) in-plane and out-of-plane equilibrium given in Equations (35) and
(36), respectively, and (2) stress-displacement and moment-curvature
relations given in Equations (3L4a) and (3Lb), respectively. Stress
boundary conditions for the uniformly compressed, simply supported plate



with straight, unloaded edges resulting from the variation are given in
Equation (37 ).

It is convenient to obtain the functionasl of Equation (1) in terms of

stresses and strains such that the nonlinear portion of the functional
due to plasticity is separable from the elastic portion. To this end,
the complementary energy density F’ is first written incrementally as

aF " = gdo_+ eydoy + 7xydrxy (2)
Next, the effective stress and strain quantities
2 2 !
i 2, & Zxy
€pp = \/’.3"\/;+ey+ eyt " (3)
and
2 2 2 !
Oepp = \/ox + LT + 37xy (&)
which are related by
o
L - g (5)
Cerr

are introduced. It can be shown readily that

€errd%rs dar

by utilizing the secant modulus theory stress-strain relations for an
incompressible material of elther Reference 1 or Reference 2. The

Reissner functional may be written then as

g
eff
U’ = f o €, + o€, + e Vo= f €prQ0.pp [ AV (6)
\'s 0



Equation'(6) can be simplified further by employing the Ramberg-Osgood
three-parameter representation of the unlaxial stress-strain curve
originally developed for aluminum alloy, stainless steel, end carbon=-
sheet steel in Reference T and given by

g [} n
€err " L4k (—eff) (7)
E E

vhere E , K, and n are constants determined for each material under
consideration. The stress-strain curve (see Figure 2) for aluminum
2024-T3 used in the present inelastic analysis is described by

K= 3.14 x 1o17 , n=8.,60, and E = 10.7 X 106 psi . Substitution
of Equation (7) into Equation (6) and subsequent integration yields

2
o KE /o n+1
U,,=foe+oe+17-eff+ eff
; XX Yy xy’xy oF m1\ g

av (8)

Upon integration over the plate thickness, the volume integral of
Equation (8) for the two-element plate becomes, with V = 2t b ,

s ll 4 , ’ 0,

U °x o T ax c
. /f (_)e’;+(_x)e'+(_3=x),' +(_)e~+<_x_)e~
EV E E g/ X E/ X E/ Y

00
. (’_xx) oot 1(°eff)2+ = ("eff)“"l
E/ X 2l2\g ntl \ E "
) }.[.l.(oeff)2+ K (aeﬁ.)ml
22\ E ntl \ E

b .

dtdn (9)

where the nondimensional coordinates & = 2x/A and 1 = 2y/b are
introduced, and the total stresses and strains are written in terms of
in-plane and bending contributions as denoted by the primed and double=
primed quantities, respectively. The subscript t refers to the top
face, and the subseript b refers to the bottom face. Finally, through



the utilization of the strain-displacement relations of von Kdrmén plate
theory, modified for the two-element plate as indicated in Appendix I,
Equation (27), the Reissner functional given in Equation (9) becomes

1 1 ’ ’
o} 1 (o3 1l
S @5 () 5 4
o o E ’x 2 ,x E )y 2 b
T’ c’\rh c’’\rh
s (Vv su rwow +(_x_)[_w ]+(_L)[_w ]
E ,x )y ’x ,y E 2 ’H E 2 ’yy

o ()] - 1), - ()]

£ . [(“eff)n+l + (3222)n+1'] ’ dtdn (10)
2(n+1) E /t E /b

Specialization for Elastic Behavior, Umnmodified Version

, s

S

EV

The Reissner functional given in Equation (1) is specialized for the
elastic postbuckling problems simply by setting K equal to O . The

effective stress, in general,

2
a

2 2 2
etr = Txp Oy - 0T+ BTxy (11)

may be written for the two-element plate as

2 rd Y4 2 , ’, 2 2 ’ &4 ’ a4
2 + + -
(O‘eff) (O‘x to Yo+ (6t a”) (crx + o )(o‘y + O'y )
t,b
+ 3 (12 t120)2 (12)
Xy Xy



It is easily verified that
1[0 ..\2 o 2 1[/0/\2 0’\2 . ‘ ‘" \2
SRS ERG RS RS
L E /. E / 2 L\E E E E E
c"2 0012 oll oll Tl'
. (L) E (..Y..) -(_x_) (_1_),, 3(_xx)2]
E E E E E

(13)
Thus, Equation (10), with K equal to O , can be written
00 L1 ’
U F g 1 o’ 1
—=Jf(—x-)u +-w2]+(-1 v +—w2]
EV E X ) X E Y o Y
00
T’ o’’\rh o’‘\rh
R (_xx)[v b dw +(.x_)[_w ]+ a\Z,
E X »Y 31X B 2 2 XX E 2 oy
'l'" l 12 12 . ’ ’ 2
(2 ] - 1) () ()R o)
E 2] 2 l\g E E/\E E
ol/g o"z ol' oll 1'"2
G O Y
E E E E E

The formulation of the Reissner functional given in Equation (14) per-

mits an independent selection of the stress and displacement quantities

that satisfy at least the prescribed displacement boundary conditions im-
plied in Appendix I for applicatior of the Rayleigh-Ritz procedure. However,
since the stress distributions are selected independently in the Reissner
formulation, the stress boundary conditions may be satisfied as well.

The requirement that the functionasl be stationary with respect to the

free parameters which describe the assumed states of stress and displace=-

ment then approximetely satisfies the equilibrium conditions [Equations

10

o



(35) and (36)) and the stress-displacement and moment-curvature rela-
tions [Equetion (34)].

Specialization for Elastic Behavior, Modified Version

The formulation given in Equation (14) is modified by enforcing, at the
outset, the moment-:urvature relations given in Equation (34b), which

results in the expressions

6’ 2h 1 h

& . _[w I ]

E 3 2.8 2 Wy

o'’ 2h 1

. —[w . v ] Y (5)
E 3 ,yy 2 ,X.X

T’ h

o _[w ]

E 2 ,xy

~

Utilizetion of the relations given in Equation (15) permits the out-of-
plane equilibrium Equation (36) to be written

h r'd rd ’,
D VW - 2tf(°xw,x.x *ow ot 2'rxyw’xy) = 0 (16)

Equation (16) is analogous to the femiliar fourtne-order out-of=-plane
equilibrium equation for eo0lid plates under the action of in-plane
forces given by

Dvuw -tow  +ow 42T w ) = 0 (17)
’

xx Y LYY Xy Xy

Substitution of the expressions given by Equation (15) into Equation (14)

11



yields the modified version of the functional
00 11 Z ’
§) g 1 o 1
—_— ff X [u + - w2 +[LY|lv + - w2
EV E L X o ’X E »Y o Yy
00
1}; 1 o); g’ aJ; o’
s (2w _wa ew s -__+(-x -(—)l
E X Y X Y o I\g E E E

7.4 h2
3 —xl)z + — w2 + w2 +w W + w2
E 6 » XX A 1 XX LYY Xy

in which only the quantities o}; , O
variationally independent.

+

dédn (18)

’

, T ,u, Vv, and w are now
Yy Xy
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METHOD OF SOLUTION

The most efficient application of Reissner's variational principle to
obtain solutions of the inelastic postbuckled nlate problem utilizing
a direct (Rayleigh-Ritz) approach requires prior knowledge of the elas-
tic stress and displacement distributions. The fact that the plates
considered herein buckle elastically suggests, with a high degree of
confidence, the use of stress and displecement distributions from
existing essentially "exact" elastic plate solutions as guides in
selecting the assumed distributions for postbuckling into the inelas-
tic range.

In general, based on the quite accurate elastic stress distributions
depicted in Reference 5, the in-plane stress system is seen to be
suitably described by expressions of the form

a’ D

= = ZZ s’

E even

% 19

z ZZ b g* ) (19)
even

T'

e ZZ o4V
odd J

L4

For the functiomal given in Equation (1), the bending stresses LA
o&' , and 1£; are, of course, expressible in a similar manner. How-
ever, it is found that best results for both accuracy and simplicity
are obtained in the present problem by selecting the bending stresses
in the form of curvatures, as stipulated by Equation (15), but with
perfectly free amplitude coefficients. The modified functional given
in Equatior (18) for elastic behavior requires no specification of the
bending stresses, since the moment-curvature relations are enforced at

the outset through Hooke's law.
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The displacements satisfying all geometric boundary conditions (see
Appendix I) are suitably expressed by series of the form

e

L3 ey (/2 BHEK n :
c = e(b)+zz Uy, Sin =% cos—l’:x (20a) |
even
Voo e (Z)+) WX g4p B
5 f(b)-i-zz Vun €08 . sin—.’:x (20v)
even
W mx n
= z z ¥ COS 5 cos —.::X (20c)
odd

where e 1is the applied unit shortening.

The coefficients f , W Ven ? Y aij » Dy
termined from the condition that 8U°" = O with respect to these co-
efficients. The number of free variables, indicated by Equations (19)

and (20), to suitably describe the stresses and displacements may seem

b,. , and cij are de-

excessive at first glance; however, as observed in Reference 9, the in-
plane stress distribution can be selected such that one or both of the
in-plane equilibrium equations are satisfied independently of the magni-
tude of the free stress coefficients. If the y-direction in-plane equilib-
rium equation (35b) is satisfied independently of the stress-coefficient
magnitudes, then the v-displacement cannot be specified arbitrarily. This
is a consequence of the fact that the satisfaction of the y-direction in-
plane equilibrium equation, which is performed at the outset, does not
permit the variation SVU' =0 to be made. Similarly, the u-displacement
cannot be specified in terms of unknown amplitudes if the x-direction in-
plane equilibrium Equation (35a) is satisfied independently of the stress-
coefficient magnitudes., The procedure, wherein one or both of the in- 3
plane equilibriums are satisfied independently of the stress coefficients,
has merit in problems where a stress-function approach is not feasible.

Such is the case, for example, in Reference 9, where a highly nonlinear

1k
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elastic shell theory is employed, and in the present problem, where
inelastic behavior is present.

EIASTIC PROBLEM, MODIFIED REISSNER FUNCTIONAL (SOLUTIONS A)

The in-plene stress distribution of the form given in Equation (19) is
assumed initially, for the present analysis, as

BN

~

- 2 4 §2 2 M §.2 L §h 2, _E,h L
a.oo + 8.027] + aohq + 322 n aeh n + 8.)+2 i a)_m |

= I%Q

= ko‘
n ‘

2 4 4 6 24 2.6
Boo * Paot * Vb * Doy * Bogh + By fn’ + bty ) (21)

q
3 + c15§q5 + 033§‘q3 + c35§3n5

c13tn

) L"‘
]

Due to the large number of stress coefficients, it is convenient at this
point to invoke the stress conditions at the plate edges implicit in
Equation (33) and thereby reduce the number of free variables consid-
erably. The satisfaction of the stress boundary conditions is not
actually necessary, since the surface stresses are not specified for
the present problem. This procedure eliminates 8 stress coefficients
and reduces the number of free coefficients to 10 . In view of the
discussion in the previous section, a further reduction in the number
of free stress coefficients can be made by taking the assumed u- and
v-displacement functions to be independent of free parameters; thus, it
is possible for the in-plane equilibrium Equation (35) to be satisfied
identically. With the end shortening specified, a u-displacement func-
tion which satisfies the geometric boundary conditions and which contains

no free parameters is

15



Immediately, Equation (35a) can be satisfied identically by relating

’

the coefficients of o’ and = .
X Xy

Now, if the constant v-displacement at the unloaded edges were to be
specified with regard to magnitude, then the function

Eee(d)

would satisfy the geometric boundary conditions at y = % b/2 and would
permit the coefficients of o): and T};y to be related such that Equa-
tion (35b) could be satisfied identically. However, although the v=-
displacement is constant on the unloaded edges, its magnitude f 1s
actually unspecified for the present problem. Indeed, the magnitude of
f shkould be established in the variational process, with Equation (35b)
being satisfied only approximately. Nevertheless, in view of the small
influence of f reflected in the solutions presented in References 1
and 2, it 1s found that the specification of f = 0 and the identical
satisfaction of Equation (35b), in addition to the identical satisfac-
tion of Equation (35a), lead to accurate results. Thus, Equation (21)
can be reduced to the expressions conteining only six free varisbles

given by
Z L h
] £ > )
—xsA+Aq2+Aqh+C(§2-—)(q2-—q)
E 1 2 3 2 3
. L 6
g 1 1 1\/n |
Lo st YEE) S
E 3 5 3/ve 3
2
X . et - ) (7 - )
E 3 J

where new symbols for the stress coefficlents are introduced for
simplicity.
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There are no restrictions on the out-of-plane displacement w other

than those associated with the geometric boundary conditions. As a re-
sult, the assumed function for w +that satisfies the geometric boundary
conditions and that provides sufficient freedom to change the waveform

as postbuckling progresses is obtained by retaining only the LT w31 .
and w13 terms of the out-of-plane displacement series given in Equation
(20c). The actual displacement distributions, with both in-plane equi=~
librim and stress bourndsry conditions satisfied, are assumed throughout

the present analyses to be

t- e f3)

%. = 0 >(23)

LA = xy Jmx y = . 31y
b wll cosk COS.b +w31 cosTcosb +w13 cos}‘ cos8 b J

The modified Reissner functionsl given in Equation ( 18) » employing the
expressions given in Equations (22) and (23), is expended to yield
Equation (39) of Appendix II. The solution obtained by utilization of
the functional given in Equation (39) with (xh/b) Vi3 = »713 =0 1s

designated as Solution Al, while the solutions obtained with w13 re=-
tained are designated as Solutions A2 .,

EIASTIC FROBLEM, UNMODIFIED REISSNER FUNCTIONAL (SOLUTIONS B)

Instead of relating the bending stresses to the curvatures through
Hooke's law, as is the case in Solutions A, the bending stresses for
the unmodified functional expressed by Equation (1L4) are selected in-
dependently. With the utilization of the three out-of-plane displace-
ment terms given in Equation (23), the bending stress distributions, in
the form of the curvatures as specified by Equation (15), satisfying

17



the boundary conditions [Equation (37)], are

o ( Ty 2:ry> e 3mx WS
—_— = A cos = + A cos = ) cos — <+ A c0§ =——— CO§ —
E T b L A b
o’ Ty 3xty o 3mx ny
L = B,, cos —+ BlB cos —— ) cos — + B31 cos —— CO8 — (2h)
E b b A A b
T’ xy 3y oS 3 3ny
RS A cll sin — + 013 sin —) sin — + 031 sin — sin —
E b b A A y J

where all amplitude parameters are free; however, it is found for rec=-
tangular plates thaet the number of free coefficients may be reduced
without significant loss of accuracy by setting AlB/All = Bl3/Bll =
C13/011 =a and Ay = By, =Cgy =0 . Upon substitution of the
expressions of Equations (22 ), (23), and (24), the modified Reissner
functional given by Equation (14) is expanded to yleld Equation (42) of
Appendix III. Solutions obtained on the basis of the functional, Equa=-
tion (42), with w given by Equation (23) are designated Solutions B.

INEIASTIC PROBLEM, UNMODIFIED REISSNER FUNCTIONAL

For the determination of the inelastic postbuckling behavior and maximum
strength of plates, the Reissner function gziven by Equation (10) is
employed in conjunction with the stress distribution described by Equa-
tions (22) and (24) and the displacement functions of Equation (23).
However, due to the Ramberg-Osgood generalized stress-strain curve
parameter n being large for conventional metals in general, the in-
dicated integration in closed form of the effective stress terms in
Equation (1C) is prohibitive. Consequently, the integration is per-

formed numerically.

18



For K= 0 , Equation (10) reduces to the functional given by Equation
(42). Hence , the functional for the inelastic problem may be written as

1 1l

v <U__> R '(ﬁ) (._fi)
J
EV EV Jelastic ™1 5o E /s 5Ny

e

dédn

(25
where (U”/Ev)elastic is given in Appendix III by Equation (42).
The required solutions are obteined by determining the values of the
stress and displacement coefficients that render the formulated Reissner
functionals stationary in value. To achleve elastic Solutions Al, A2,
and B and the inelastic solution, the procedure requires the solutions
of 8, 9,13, and 13 simultaneous nonlinear algebraic equations re-
spectively. The method utilized in the solution of these equations is
a basic Newton-Raphson iteration procedure. Appendix IV contains a de-
tailed description of the method. The modified steepest descents min=-
imization technique developed in Reference 1 and improved in Reference 2
to obtaln relative minima of the strain-energy functional is not as
efficient for the present solutions, since the vanishing of the first
variation of the Reissner or modified-Reissner functionals with respect
to purely arbitrary stress and displacement states does not correspond
to the achievement of relative minima.

The application of the Newton-Raphson technique yields numerical values
for the coefficients which can be utilized in conjunction with the axial
stress distribution to construct load-shortening curves. The load=-
shortening curves are plots of average axial stress versus unit shorten=-
ing, normalized with respect to the buckling stress and strain for a
square (or infinitely long), simply supported plate, respectively. The
average stresses in the present analyses are obtained directly from an
integration of o); over the plate width. Numericel values of the stress
and displacement coefficients, normalized with respect to the critical
strain of a simply supported square (or infinitely long plate), are
listed in Tables I through VIII for various values of unit shortening.
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Two solutions, denoted by Solution Al and Solution A2, are effected for
square plates employing the modified elastic functional and are compared
in Figure 3 to the first-approximation elastic solution of Reference 2

and the essentially "exact" solutions of References 3 and 5; corresponding
normalized stress and displacement coefficients for specific values of
unit shortening are listed in Tables I and II. Solution Al, which
utilizes only the wll and w31 terms in the w=displacement function,

is accurate only for square plates. Analyses results for rectangular
plates with aspect ratios 1.25 , 1.33 , 1.5 , and 2.0 , obteined from
utilization of the modified (Solutions A2) and unmodified (Solutions B)
elastic functionals, are compared in Figures 4 througn 7 to the first-
approximation elastic solutions of Reference 2 and the essentially "exact"
solutions of Reference 3. Tables II througn V contain representative
values of the normalized stress and displacement coefficients, at given

unit shortenings, for these cases.

A maximum strength analysis of an aluminum 2024-T3 rectangular plate
with aspect ratio 5 , for which test data exist in Reference 3, is
obtained through utilization of the unmodified inelastic functional.

The two-element plate geometry analyzed is made effectively equivalent
to the plate tested in Reference 3 by equating the expression for the
critical stress of the two-element plate, derived in Reference 2 to be
O = l4/3[‘.!'1(:th/'b)2] , to the classical critical stress expression

. ™ E(rrt/b)e/3(l-u2) for a solid plate. The load-shortening curve
obtained from this analysis is compared in Figure 8 to the test data

of Reference 3 and the analysis results of Reference 2. Tables VI
through VIII contain numerical values for the elastic and inelastic
stress and displacement solution coefficients, at various values of

unit shortening, corresponding to the buckle wavelengths considered.

The determination of the values of unit-shortening ratios at which the
buckle wavelengths change as the unit shortening increases 1s described
in detail in Reference 2 and is briefly restated herein for completeness.
The calculation is made by construction of load-shortening curves cor-
responding to each buckle half wavelength A or the number of buckles m .

20



For a given plate geometry, the load=-shortening curves corresponding to
m and m+l buckles intersect. At a particular value of shortening,
the Reissner functional megnitude (area under the load-shortening curve)
corresponding to m+l buckles will be equal to that corresponding to

m buckles. Theoretically, this value of unit shortening is the point
at which a "jump" is first possible. For additional shortening, the
curve corresponding to mtl buckles becomes temporarily the appropriate
load-shortening path. The procedure is followed with successively in-
creased numbers of buckles considered to the point at which a maximum
load is reached.
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RESULTS AND DISCUSSION

EIASTIC SOLUTIONS

To establish confidence in the method of analysis employed herein, ap-
plications of Reissner's principle and a modified version of the prin-
ciple have been made for comperison with essentially "exact" solutions
to the elastic postbuckling problem of uniaxially compressed, simply
supported plates possessing straight, unloaded edges. Excellent agree-
ment of the present results with the essentially "exact" solutions of
Stein (Reference 3) and Levy (Reference 5), shown in Figures 3 through
T, indicates that the method of solution is sufficiently flexible to
permit appreciasble simplifications to be made without significant loss

of accuracy.

One simplification, that of coupling the bending stresses to the curva-
tures, introduced in Reference 9 and employed herein to perform Solu-
tions A, is seen to be a desirable procedure for elastic plate=type
problems, in that the number of free stress parameters in the direct
variational solution is considerably reduced. Another simplification,
that of describing the u-displacement function by a single term and the
specification of v = 0 (utilized in both Solutions A and B), which
allows the in-plane equilibrium equations to be satisfied identically,
appears to be justified by the excellent agreement obtained upon com=-
parison with the essentially "exact" solutions. Obviously, if the
stresses were required to be found in terms of the displacements through
application of the constitutive law (potential energy approach), the in-
fluence of the simplified u- and v-displacement functions would have a
profound effect, relative to the satisfaction of in-plane equilibrium.
Hence, the feature of selecting the stresses and displacements inde-
pendently and of satisfying Hooke's law only approximately, as per-
formed herein for Solutions B with the aid of Reissner's variational
principle, offers a very desirable approach relative to that of po-
tential energy, wherein very accurate displacement distributions are
required to attain satisfactory stress distributions through the con-
stitutive law.
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The reduced complexity of the problem, as a consequence of the invoked
simplifications, is strikingly illustrated by the fact that Levy
(Reference 5) requires at least four out-of-plane displacements and
fourteen stress function terms to obtain the essentially "exact"
solution shown in Figure 3 for the square plate at the maximum shorten=-
ing ratio considered. At the shortening ratio corresponding to the
calculation limit of Stein's solution (Reference 3), at least three
out-of -plane displacement terms and either ten stress-~function terms
or ten in-plane-displacement terms are required to effect the "exact"

solution by the Levy and Stein approaches, respectively.

INEIASTIC SOLUTION

The maximum strength eanalysis of a uniformly shortened, simply supported
rectangular plate based on Reissner's variational principle has been
performed to Justify the procedure for adjusting, in & gross manner,
the load-shortening curve to account for waveform changes beyond ini-
tial buckling. This procedure was utilized in the solutions of
References 1 and 2 in conjunction with the potential energy method and
with the assumed persistence during postbuckling of the waveform oc-
curring at initial buckling. The load=shortening curve obtained in the
present analysls for the particular plate geometry reflected in the
experimental work of Reference 3 agrees well with the results of
Reference 2, as shown in Figure 8. However, both the present results
and the results of Reference 2 are slightly conservative with respect
to the experimental data of Reference 3; the increased slope of the
experimental curve at initial buckling indicates that the test dats

have been influenced to some degree by the test fixtures.

To place the present maximum strength solution in more general perspec=-
tive, it is plotted in Figure 9 along with a portion of the theoretical
and experimental plate maximum strength data compiled in Figure 5 of
Reference 2. The reference numbers in Figure 9 are those of the
present report. It can be seen that the maximum strength analyses of
both References 2 and 3 correlate more closely with the test data of
Reference 1l than with the test point taken from Reference 3. However,
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as mentioned previously, the test data of Reference 3 reflect an appar-
ent increase in plate strength due to test fixture effects; however,
since the actual cause of the increased slope of the load-shortening
curve at initial buckling (see Figure 8) could not be isolated, no
attempt has been made to adjust the experimentel postbuckling and maxi-
mum strength results. The comparison of the present results and those
of Reference 2 with the maximum strength criterion based upon the

von Kdrmen effective-width concept (Reference 10) suggests that when
the buckling stress for a simply supported plate is greater than

0.3 ocy , the curve faired through the three points given by the
calculated point of the present analysis and the calculated points of
cr)cl/ocy = 0.3 and 0.6 , respectively, should be
utilized for maximum strength prediction of rectangular plates

(L/b >5) . Application of the present analysis technijjue to improve
the results of Reference 2 at (ocr)cl/ccy = 0.3 end 0.6 , respec-
tively, would show little effect, since the higher initial buckling
stresses reduce the postbuckling range considerably prior to the

Reference 2 at (o

occurrence of a maximum load. In fact, a glance at Figure 5 of
Reference 2 shows that the maximum strengths of simply supported plates
with various types of unloaded-edge conditions after buckling reflect
little difference as (ocr )cl/ocy approaches about 0.6 .

The complexity of extending the potential energy (Rayleigh-Ritz)
solution of Reference 2 (without the load-shortening curve adjustment
procedure) to obtain results equivalent to those of the present
analysis is prohibitive, due to the number of displacement terms re-
quired to obtain an accurate in-plane stress distribution through the
constitutive law. The procedure employed in References 1 and 2 re=-
quires the existence of an "exact" elastic solution upon which to base
the adjustment procedure; on the other hand, efficient use of the
present theory requires, in the absence of stress distribution infor-
mation determined on the basis of limited experimental data, no more
than approximate elastic solutions from which forms of the assumed

stress distributions can be obtained.
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Another advantage of the present method of analysis relative to the
potential energy approach of References 1 and 2 is that in the former,
the stress distribution can be evaluated throughout the plate after the
stationary value of the Reissner functional has been determined, whereas
in the latter, the stress distribution is known only for the solution
based upon the initial buckling waveform. The stress distributions
corresponding to the adjusted loasd=-shortening curves remain, of course,

unknown.

Due to the utilization of a deformation theory of plasticity, occurrence
of unloeding in particular regions of the plate as the shortening and
number of buckles both increase must be considered. It is found in the
present analysis that local unloading of small magnitude (no greater
than 5%) does occur in inelastic regions of the plate when the buckle
wavelength is assumed to change abruptly; however, due to the known
inaccuracy of the uniaxial stress-straln curve representation for a
material and taking cognizance of the fact that the total load carried
by the plate is an integrated phenomenon, the small, local unloading
that does occur in the inelastic portion of the plate is ignored in the
present problem. Thus, it may be considered that the present problem
has been undertaken under the assumption that the material is simply
of a nonlinear elastic nature.

The simplifying assumption in the present solution that the v-displacement
is zero throughout the plate should be assessed. Based on the correlation
of the results for the elastic solutions carried out herein and in Ref-
erences 3 and 5, the influence of the violation of the condition that

the unloaded edges be free to tranmslate is considered to be minor. The
actual correlation is shown in Figures 3 through 7.
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CONCLUDING REMARKS

The basic factors required to accurately predict the inelastic post-
buckling behavior and the maximum strength of simply supported rec-
tangular plates with straight, unloaded edges have been shown to be
(1) buckle wavelength changes, (2) changes in waveform beyond initial
buckling, and (3) the onset of plasticity. The impact of item (1) can
be seen in the inelastic postbuckling analysis of simply supported
square plates presented in Reference 1. While the buckle aspect ratio
remains unity, no clearly defined plate maximum strength is obtained
for the quite reasonable range of plate end shortening considered. |
However, the consideration of all three factors collectively for the g
first time in the rectangular plate investigation of Reference 2 re-
sults in an analytical solution for the prediction of the maximum
strength of a simply supported plate, which correlates excellently

with experimental data presented in Reference 3. The experiment re-
flects loading and boundary conditions very close to those assumed in
analyses of References 1 and 2. With regard to item (2), the analyses
of References 1 and 2 utilize a load=-shortening curve adjustment pro-
cedure that only grossly accounts for the waveform changes beyond in-
itial buckling as they effect the load-shortening curve. The present
analysis, based upon Reissner's variational principle, establishes the
validity of the adjustment procedure and, in addition, illustrates
another attractive method for obtaining engineering solutions to plate
maximum strength problems. As concerns item (3), the ability of the
secant modulus deformation theory of plasticity to adequately represent
inelastic behavior is demonstrated. Local unloading of small magnitudes
occurs in certain inelastic portions of the plates analyzed; however,
the influence of small unloading on the postbuckling and maximum plate
strengths (which are integrated phenomena ) is not significant.

Efficient use of the potential energy method of solution with the
adjustment procedure incorporated requires that essentially "exact"
elastic solutions be available to provide the necessary basis for
carrying out the adjustment procedure. However, should neither "exact"
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elastic solutions exist nor limited experimental data be available to
suggest the form of the stress distributions, then only approximate
elastic solutions are required to obtain the general form of the dis-
tributions to be used in conjunction with Reissner's variational

principle.

The fact that Reissner's principle has had little application to date
may be attributed to the apparent complexity involved in the require-
ment to assume the states of stress and displacement independently.
However, the present analyses indicate that the principle has suf-
ficient flexibility to permit major simplifications to be made with
little loss in accuracy. In particular, the features of (1) employing
only the first appraximation of the in-plane displacements and (2)
coupling of the bending stresses to the curvatures through the con=-
stitutive law in the elastic case (the modified Reissner principle
introduced in Reference 9) are found to be extremely useful in re-
ducing the number of free amplitude parameters appearing in the assumed
stress and displacement functions. Item (1), although resulting in a
violation of the unloaded-edges boundary condition and permitting only
approximate satisfaction of the constitutive law, is seen to have only
minor influence on the accuracy of the elastic solutions. The infer-
ence of item (2) 1s elso found effective for the present inelastic
solution, where the bending stresses are assumed in the form of the
curvatures as indicated by the constitutive law but with completely
free amplitude coefficients whose magnitudes are determined from the

variational process.

The unconservative nature of the von Kdrmdn effective-width formuls,
vhen applied to simply supported plates possessing a buckling stress
greater than 0.3 (ocy) , suggests that the combined results of the
present lnelastic analysis and the inelastic analyses of Reference 2
be utilized for design purposes. However, additional tests, utilizing
the technique described in Reference 3, are required for the range
0.3 < (ocr)cl/acy < 0.6 . For simply supported plates with buckling

stresses less than 0.3 (°cy) , the von Kdrmdn effective-width formula

2—;



provides conservative design data for plates in vhich the edges do not
move out of the original plane in the postbuckling range. Where other
plate loading and boundary conditions are of interest, the techniques
of either Reference 2 or the present inelastic analysis provide an
efficient means for obtaining maximum strength behavior. The com=
bination of the results of such analyses with a minimum of Judicious
testing (for correlation purposes) could provide a useful tool for
removing some of the conservatism from present design analysis

techniques.



Figure 1.

Plate Geometry and Coordinate System.

29



60

STRESS,KSI (TENSION OR COMPRESSION

Figure 2.

1 1 | =L 1 J

o

-

0002 0.004 0006 0008 0010 0.012
STRAIN, IN/IN

Stress-Strain Curve for Aluminum 2024-T3 Assumed in Present
Tnelastic Analyses.

30



"SUOTINTOS O9T3SBIY UO paseg S93e1d axenbg 103 saaan) Butuajaoyg-peoq *€ aandtyg

1 hocv
9
08 0L 09 0OS Ov O¢€ 02 o0l
¥ T T ¥ ¥ T o-
SISATUNV IN3S38d-2v NOILMI0S — s’
SISATUNV IN3S38d-1v NowLnIos - —
(0°9=19(43%5)/9 g, ¢ 30N3y343y)
S ONV € SIINI¥IIFY — 102
¢ ONV | S3ON3YIIIY ———_
(s
ez 10
0
{o0¢
(01 =Y/9)
SV 3wwvnos | o ¢
/ J o

31



40 r

3.5t RECTANGULAR PLATES
(b/A=1.25)

30 | 4

— 2.5 !

Q

——-— REFERENCE 2

——— REFERENCE 3

__ SOLUTION A2
PRESENT ANALYSIS

—— SOLUTION B
PRESENT ANALYSIS

2.0

1.5 |

J

1.0 |
0 20 30 40 50 6.0
]

ie s
7]

Figure 4. Load-Shortening Curves for Rectangular Plates Based on Elastic
Solutions (b/A = 1.25) .
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PLATE (REFERENCE 3)

5.50- &  KNIFE-EDGE TESTS, 3-BAY ALUMINUM
PLATES (REFERENCE 1)

®  INELASTIC ANALYSIS. ALUMINUM
SQUARE PLATE (REFERENCE 2)

5.001- ©  INELASTIC ANALYSIS, ALUMINUM
SQUARE PLATES (REFERENCE 1)

O  INELASTIC ANALYSIS, ALUMINUM
RECTANGULAR PLATES (REFERENCE 2)

4.50 ¢ PRESENT INELASTIC ANALYSIS,
ALUMINUM RECTANGULAR PLATE

U#% VON KARMAN EFFECTIVE-WIDTH FORMULA

4.00 BAND FOR EIGHT MATERIALS (REFERENCE 2)
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Figure 9. Theoretical and Empirical Maximum Strength Criteria
for Simply Supported Rectangular Plates.
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TABLE TI.

NCRMATIVED STRESS AND DISPLACEMENT CCEFF ICJENTS
FOR SQUARE AND RECTANGULAR PIATES, SOLIIL1ANG A2

c

a %ay 2 Ay Ay B 5y R o P 8
(ecr)cl “cr)cl (ew:)::l (ecr)cl e:r)cl (ecr)cl (ecr)cl (ecr)cl (ecr)cl (ecr)-:l (e-,'r)cl

g =1.0

2,0 -1.490 - 1,004 -2.264 1,346 -2.083 1.132  0.357 0.555 - 0.908 - 0505
2.5 - 1.728 - 1..001 - 3.431 2,083 -2.991 1..576 0.805 0.683 - 1.717 - 0.8719
3.0 - 1961 =0.995 -h4.628 2,868 - 3.803 1.6 1430 0.7%0 - 2.708 - 1,288
3.5 - 2,189 - 0.978 - 5.%8 3.709 = 4.505 2,177  2.226 0.885 - 3.854 - 1,718
4o -2.0412 -0.938 -7.123 4,600 - 5,093 2,328  3.189  0.969 - 5.132 - 2.161
b5 - 2,631 -0.952 -8.422 5539 -5.570 238 b330l L.047 - 6.518 - 2,614
5.0 = 2.845 - 0.899 - 9.752 6.523 - 5.980 2,380  95.551 1,118 - 7.987 - 3.073
5e9 - 3,065 = 0.861 -11.110 THNT - 6,207 2.211  6.923 1.185 - 9.916 - 3,540
6.0 - 3.262 =-0.819 -12.b90 8.600 =~ G.38L 2,003 8.k02  1.246 -11.088 - k013
g =1.25

2.0 -1.435 -0.908 -2.221 1.068 - 1.620 0.887 - C.k98  0.469 -~ 0.232 - 0.7k
3.0 =1.8% <0.77h 4,363 2,022 -3.282 1,778 -0.718  C.676 - 0.688 - 2,010
4,0 = 2,201 - 0.05% - 6,348 2.845 < L.8B% 2,617 - 0.670 0.83% - 1.289 - 3.huk
5.0 = 2,568 = 0.54% < 8,219 3.581 - 642  3.397 - 0.387 o©.970 - 2,009 - k.93
6.0 -~ 2,927 = 0.443 <10.010 4,260 - 7.923 b,1 0.107 1.088 - 2.83 - 6417
B = 1.333

2.0 = 1440 - 0,920 - 2.167 1,013 = 1.bbo 0.783 «0.563  0.437 - 0.152 - 0,766
3.0 - 1,810 « 0,761 - 4,269 1.869 = 3,003 1.625 «0.94%2  0.637 - 0.462 - 2,141
4o -2.167 -0.61 - 6047 2.518 - 455k 2,448 - 1,114 0.7% - 0.871 - 3714
5.0 =-2.513 - o0.498 -7.853 3.011 - 6,087  3.247 - 1.110  0.920 - 1.362 - 5351
6.0 -2.852 -0.3% -9.k29 3.391 - 7.593  L4.017 - 0.953  1.034 - 1.9k - 6.989
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AP DL

EUIER EQUATIONS AND BOUNDARY CONDITIONS DERIVED FROM THE VANISHING

QF THE FIRST VARIATION OF THE REISSNER FUNCTIONAL FCR
A TWO-ELEMENT PIATE WITH PRESCRIBED END SHORTENING

The Reissner functional for present considerations is defined as

floe +oe + Ty -F | av (26)

The strain-displacement relations for small-strein, moderate rotations
plate theory, when modified for the two-eclement plate of Figure 1, be=-

come
\
; oC 1.2 h
= + = - +
% S LS u,x t3 w,x 2 w,xx
€ = e'te’ = v 44w iy (27)
Yy Y Y2 .Yy 2 L,y
t,b
= ‘ t '’ =2 4 +V +W W *hw
7xyt ,b 7xy 7xy Y X »oX WY "Xy y

vhere the + and - signs correspond to the top and bottom elements
of the plate, respectively.

The stresses wmay be written

\
G = o_l i_ 0"
%t,b
o = 03: + 0%’ > (28)
t,b y
L o r); - 1'};'

where the primed and double-primed quantities denote ineplane and
berding contributions, respectively.
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Substitution of Equations {27) and (28) into Equation (26) yields

L/2 bJj2

[

~
n
ct

P N

Q
+
Q

s xb) ( : ;2) (cxb i axb) By

-Lf2 <b/2

1.2 h
o + 0 v + =V + |0 - Qg -W
(yt yb)( y o2 ,y) (yt yb)2 ¥y

+

+ T + 7T u + v + W W
(th xyb)( Y X »X )y)

+

T -1 hw -{F'+ F |}axa 2
( xyt xyb) Xy ( t b) Y ( 9)

The average stresses and resulting bending moments are

(ax ‘o, )
, 4 b 8
o =
X
2
(a .o )
, Yo N
fo} =3
y
2
(Txy + Txy )
, % b
LA } (30)
2

(Continued)



- }_1 = ’
Mxy = %3 ("xy,C - Txyb) tfmny

Substitution of Equation (30) into Equation (20) and with (F‘t; + F‘r;)

replaced by 2F° gives

jL(g 72
0 1.2 0 1.2
tf on (u,x + §w’x)+ Zoy(v,y + Ew,y)

=Lf2 b2

UII

Xy »X Y £ P XX
T
M M
- Ly  +2Xy o'l axdy (31
t )yy t ’xy 3)
f f
In the elastic case,
1 2 2 2 2 2 2
F’ = = lo° + 0 -0 o + 31 + 0 +d =0 0o + 3t ]
E ["t g o Xg Yy e N K Hh XY,

or

1 1
F’=—a’2+o'2-o’c’+31"2+ (1VF+NF-MM +3N12)]
X y Xy Xy (tfh)2 X y Xy Xy

g
whereas in the inelastic case, F’ = [ [ eeffdoeff . The vanishing

of the first variation with respect to Oy s oy . Txy o Mx ’ My r k&y .
u, v, and v 1is then written as

L/2 bJ2

x4 4 l 2 rd
85U tf 280x u,x + 5 w,x) + Eax (5u,x + w,xsw,x>

-L/2 b/2
7’ l 2 4
+ 2b8c0 Vv _ + =W + 20 v  +w ow
Y\ »y 2,y y sy Y Y
(Continued)
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251" (u_+V_+w . w + 21t (du_ + dv
Xy ( Y )X X ;y) Xy ( P) »X
o)
W W Wi ) - ——=w - -li&— &w
X ) ’ £ s XX t XX
f b
M M o)
— - =L 5w +2-&xw +2&Ibw
t Jyy t )yy t )xy t )xy
f f ij f
[&7" oaF’ F’ F’ oF’
2| =—— 80 + — 50’ + 61'+—5Mx+—6M
, X ¢ Y ’ Xy a aM Y
acx Bay arxy M, .
aF’ (
M dxdy = O 32
= 7 y )
Xy

With the grouping of like terms and after integration by parts, Equa-
tion (32) becomes

BU'I

L/2 ©bj2 1 . ¥’ '
2tf (u,x + ;w’x - Ql )60
-Lf2 -bf2 X

1, &F’ oF’
=W =80 +tlu +V _ +wWw. W - at’
(v,y 5 Y a(,') y T\y T T Ny T Ty
y

R L PN -

2t

2t, aMx

f aMy

L I A 8u - (0 + 1’ 5v
(Ox’x XYJY) ( Y,y xy)x)

) o+ (v )

« + (a0~ + (1w
[(oxw’x)’x (wa,y)’y ( XY »,Y X Xy »X°,Y
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+ —_ (M + M - 2M )]fm dxdy

2tf X, XX y,y}' XYy, Xy
b/2 % = g L/2 Lj2 y =+ b/2
+ 2tf OJESu l dy+2‘tf T};y'f)u , ’ dx
e x = -Lf2 e y = -bf2
72 [ lb’=+b/2 7-2 ,><=L/2
+ 2t o’'Sv dx+ 2t T &v dy
£ y .. 4 Xy a -
-L/2 y = -/ -b/2 B g
7{2 ' x =+ Lf2
+ [atfaxw,x + 2thwa,y + Mx,x - Mxy,ylbw | x = - Lo dy
-b/2
72 : ] y =+ b/2
’ ) ’
* 2tf°yw,-y . "tfrxyw,x ¥ My,y ) Mxy»x o | = -bf2 =
-L/2 i
fel lx=+L/2 72 ,y=+b/2
; M, 5w dy - M, &w o
»X - . AN = -
-b/2 x=-1/2 -L/2 v e
712 ly=+b/2 72 Ix="‘1'/2
+ M &w ax + M 8w dy
Yy ,X _ Xy Y i,
-L/2 Toy=-b/2 “b/2 = REREE
= 4 (33)

For Equation (33) to vanish for arbitrery states of stress and dis=-
Placement consistent with the prescribed displacement boundary con-
ditions, then each of the terms must vanish identically. The Euler
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equations and boundary conditions that result are obtained as follows:

Stress-displacement relations:

&’ 1 5
— = €/ = u_+-w
357 X X, X
X
&F’ 1,
—_— =€ =V _+-v
3o’ y Y o Y
y
M‘I
= ¥y’ = u_+V_+WwW W
3’ 7xy Yy X X LY
Xy

Moment-curvature relations:

oF’ il
—— E -—wxx
2

éMx 2tf

OF’ 1

— = - e Y

M ot, VY
Yy f

aF’ 1

In-plane equilibrium equations:

X,X XY,y

g +
Yoy Xy,X
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Out-of -plane equilibrium equation:

4 ‘s
Ltf. [oxw,x.x xy” ,xy

+ 27w + ow
Y »Yy

]+ Mx,xx

Stress (nsturel) boundery conditions:

Téy(x, +pf2) =0
r);y(t L/2,y) =0

t&(i L/2,y) =0

corresponding to
along edges y =

corresponding to
along edges x =

corresponding to
along edges x =

-2M + M
XY, Xy Y ¥y

= 0 (36)

arbitrary u-displacement
th/2

arbitrary v-displacement
t Lf2

arbitrary rotations w
+ 1/2 53

I = corresponding to arbitrary rotations w
My(x’ tbf2) =0 along edges y = % b/2 24
~71 2
’ + = corresponding to constant v-displacement
ay(x, tbfe) d&x = 0 along edges y = * b/2

-L/2 (37)
The Euler equations and boundary conditions established from the vari-
ational Equation (33) are the same as those obtained in Reference 1 from
potential energy considerations, except for the addition of the stress-
displacement and moment-curveture relations given in Equations (34 ).
Naturally, when the constitutive law for the secant-modulus deformation
theory of plasticity (see Reference 1)

4 1 3
o, = 'B'Es [ex+§ey]
b 1
o, = 7E [ey+§-ex] > (38)
E
8
xy T 3 Txy
3 J

23



is introduced into the Reissner functional [Equation (26)) prior to
carrying out the variation, the functional can be reduced to the po-
tentinl energy function of Reference 1. The results obtained from the

variation are then identical to those presented in Reference 1.
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APPENDIX II
MODIFIED REISSNER FUNCTIONAL FOR EIASTIC PROBLEM

The modified Reissner functional given by Equation (18), after substi-
tution for the assumed stresses [Equation (22 )] and displacements
[Equation (23)] and subsequent integration over the plate area, becomes

-2 -7 -2
u A, A Wi, + o + W
— = - e [Al + _2.4, _3]+ kl Al( ll 31 13)
EV 3 5
[ _'2 ) =2 7
2|2 5 p @ 1113 34 2
al y
= o - - .
+ A k M.{. K. W W.. + k :I_]_-_é_
3173 > 3511°13 © “36
o .

..g
ll
+ C kh ( 5 > —— k6w k7wll 31>+ wllw13 37

..2
Y13
*? kgg = W) W3k 45
)
B, w 3
2 |=2 ) 31 - -
+ k - lWo. + O, === =W W
8{ na [11 13 9 5 1131]
[ (=2 - - - -2
+ B, |k (w11+9"13+2w11w31)+k 7 54k 3L
3179 o 10 11731 bl
| 2
-2
k ' 3
12 [ =2 31 - -2
+ C|—> + =t —-y..W \'f
ﬂz (11 9 2 31) 3913

(Continued)



9. _
* Ky ( 1113 * 3 w13"31)

=2

3
= V31 £
- Cky3 1k 1&( & S & 5"11"31)* kW13 + Ky
+ kg Wgig)
1], Ag Ag s 2
- - Al+—+—+C (k15+ k20+ ko, - }s27)+—AlA2
2 5 9 3
2 2
+ ;AlAB + ;AZAB -C (1:164\2 + kl7A3 + kyoB, + k2333)
+ leB + k) B + k, BB
) -2 -2
+ oWyt Kpgiay + Ky (39)
where
¥ " (b_) Y11
- sth
LI (b—) Y31 } (o)
- _ [m
13 T ( ) Y13
J

The coefficients kl
from the integration process. The constents, some of which depend upon

through ku5 are numerical constants resulting
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either or both of the paremeters b/A and xh/b , are

k) = 2.46739 [32/(nh/b)2] kjo = 0.01975
k, = 0.13069 kg = 0.08809
ky = 0.04110 kjg = 0.07111
"k, = 0.06219 kyy = 0.0005k e“
ks = 0.35653 k,y = 0.15238
ke = 1.05684 k,, = 0.00931 B2
k, = 0.39268 Ky = 0.00798 B
kg = 2.46739 [l/(nh/b)2] ky, = 0.00117 g2
kg = -0.15890 kps = 0.41123 B + 282 4 1
kg = 0.085%2 kog = 0.41123 (81:31L + 1852 +1)
k., = -0.04199 Koy = 0.00035 g2
ky, = 0.09019 B2 ky, = 0.31082
kg = 0.31831 [32/(nh/b)2] kys = -0.07298
ky), = 0.05939 kyg = 0.15801
k)5 = 0.00276 k37 = -0.0108
kg = 0.17780 kyg = 0.016%

(Continued)
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k39 = 0.05069 B ku3 = 0.194%90

k,, = -0.00526 (32 0.41123 (Bu + 18 52 + 81)

0 ky, =
k, = 0.04533 kk5 = «0,0119°
Ky, = =0.05797 ‘ (51)

The requirement of the vanishing of the first variation of the functional,
given by Equation (39) with respect to the arbitrary parameters, leads to
a set of nonlinear algebraic equations, the solution of which establishes
the values of the stress coefficients Al s A‘2 . A3 5 ]32 5 B3 , and C
and the displacement coefficients wll q w31 , and wlB « The results
obtained with vi3 ™ 0 are designated Solutions Al, whereas the results
obtained with wl3 retained are designated Solutions A2.



APPENDIX ITI
UNMODIFIED REISSNER FUNCTIONAL FOR EIASTIC PROBLEM

The unmodified Reissner functional for elastic problems given by
Equation (1k4), after substitution for the assumed stresses [Equations
(22) and (24)] and displecements [Equation (23)] and subsequent in-

tegration over the plate area, becomes

U’ A A Voo + oo + W
— = -e Al+—2+——°i + k(A [ 3L 13
EV 3 5 2 |
[ (Eyeoh) 3 _ &
+ A - Wo W, + ==Lk
o| ¥ > o 1M13 T 31;J
+A k($u+9;§l)+k-7»7 +§k
3|5 35711713 * 7" K36
L. -
[ R
11, = - e
5 C kh(_z"‘ kgvay - “7"'11"31)* k3r¥11¥13
-
w
a5 e
+ k38 —2— - k’-l»5w13w31
-2
B % 3
Ble g T, 2 g
+ k8 312 wll+ 9w13+ 5 + 2wllel
[ -2 -2 - - -2
+ B, |k (wll+%l3+2wllw3l)+k FFek, 2L
319 5 10711 11 5

(Continued)

29



+
[\VI IVe]
=|
&
x|
W
[
e
——

-
W 3
2 Y ’- - - - =
- Ck13 kl’-& (wll + -;- + ;w11w31)+ k’-l-lwl3 + kh2wllwl3
- T 5 = - n - =
+ kh3w13w31 - g BA;, ("ll +a w13) - gBll (wu +9Qavw
ﬂ - -
+ :Cllﬁ (wu+ 3aw13)
2 2
-iA2+f2+A—3+CE( + k. + - )
ol i e ky5 + Kpg + Koy = Koy

1+0f
2 2 2
+( " ) (All+Bn-AuBll+ 3°ll)

> 2 2 2

2
+ 32k18 + 33k19 + ;A]_A2 + ;AlA3 + -7-A2A3

- C (Agkyg + Agk)o + Bkyy + Bykyg) + ByBaky)

40 -
where wll F w31 , and w13 are given by Equations ( )and the k co

efficients, by Equation (Ll).
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The results obtained from the simultaneous vanishing of the first vari-
ation of the functional given in Equation (42) with respect to the
stress coefficients Al r A2 b A3 ’ B2 » B3 A Al_l ’ Bll ’ Cll , and

@ and the displacement coefficients Wi w31 , and wl3 are
designated Solutions B.
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APPENDIX IV
NEWTON-RAPHESON ITERATIVE TECHNIQUE

The requirement that the Reissner functionals given in Equations (39),
(42), and (25) have a stationsry value results in sets of simultaneous
nonlinear algebraic equations, the solution of which establishes the
values of the stress and displacement coefficients. The basic Newton-
Raphson technique is employed to effect the solution. The method is
illustrated by the following example. Consider a function F(xl,x2 b

e e e xm) for which the values of x, are sought that render F

i
stationary. This requires that

aF(xi)

x *1(xi) = 0 1i=1,2,...n (number of independent
variables)

i
If approximate values of x, ere known, the above relations may not be
satisfied. Therefore, by applying a suitable correction Axi such that
"1("1 +Axi) =0 , the desired values of x, are obtained. To deter-
mine the correction Ax, , the functions y,(x, +Ax,) are expanded

into a Taylor series about X, with only the linear terms retained.
This procedure results in the following system of linear algebraic

equations
v(x, +ax) = w(x)+ —=ax; = 0 (43)
1

where 1 = 1,2,3...m . Written in matrix form, the equations are

v r F
n N ax | = -{— (b4)
&cJ axj_ax.1 &x,

vhere 1 =1,2...m and J = 1,2...m . Thus, by adding the correction
Axi to the starting value X and by repeating the process until
E‘/axi -0 , the solution is obtained.
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For the inelastic problem formulated in Equation (25), the partial
derivatives indicated previously are obtained numerically, whereas,
in the elastic solutions, the derivatives ere evaluated explicitly.
The partial derivative approximations utilized are

F(xi + axi) - F(xi - 6xi)

7|

1 28X,

r F(x:L + axi) - 2F(xi) + F(x:l - 5x1)

2 2
oxy (8x,)
F ) F(xi + 8, , xI1 + 8x4) - F(xi + axi) - F(xJ + ax;]) + F(xi,x )
axiaxJ Bx, 8x,

(45)

wvhere 1 =1,2.,,.m and J=1,2...m .

The step sizes bxi used in evaluating these derivatives sre taken as

X, X 1073 . The erea integration indicated in Equation (25) is per-
formed numerically utilizing a basic trapezoidal technique carried out

ona 5 X5 plate grid.
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